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Abstract

Physically assistive robots have the potential to support individuals with motor
impairments in performing Activities of Daily Living (ADLs) and Instrumental Activities
of Daily Living (1ADLs), yet their usefulness depends critically on how users can
interface with them. Traditional control frameworks are rooted in industrial and surgical
robotics and do not reflect the priorities of users in assistive contexts, such as preserving
a sense of agency, comfort, long-term use, etc, thereby underscoring the need for a
more user-centered framing. At the same time, sensors such as inertial measurement
units (IMUs) and electromyography (EMG) embedded in wearable devices have been
increasingly leveraged as control interfaces for assistive robots, with their form factor
and ability to capture subtle, on-body signals presenting unique opportunities for natural,
user-aligned control across varying levels of motor ability.

Hence, this work introduces a user-centric framework that defines three levels of control,
namely active, shared, and passive control, and situates wearable sensing modalities
within each level. While wearable-based active and shared control have been explored
in literature, passive control using wearables remains comparatively underexamined.
Building on limited prior work that demonstrated the feasibility of wearable-based
passive sensing for bite timing, we conduct a thematic analysis on participant feedback
on WAFFLE, a wearable-based bite-timing system for robot-assisted feeding involving
fifteen able-bodied participants and two participants with motor impairments. Our
analysis identifies recurring themes of feeling of control, natural pacing, low workload,
and social compatibility, demonstrating that implicit cues can enable interactions that
feel intuitive and responsive without requiring explicit user commands. Together, these
findings highlight the unique potential of wearable-based passive control systems that
can align with natural human behavior to support user-aligned control interfaces.
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Figure 1: An overview of the pipeline to use sensors as robot control interfaces: Diverse
sensing modalities such as EMGs, IMUs, and contact microphones are embedded into
everyday wearable form factors such as glasses, rings, wristbands, hats and sleeves. They
capture user motion and physiological cues that are then processed to infer human intent
and gestures, enabling robots to execute tasks through wearable control interfaces.

1 Introduction

Motor impairments can drastically limit a person’s ability to carry out Activities of Daily Living
(ADLs), which are defined as fundamental self-care tasks, including bathing, eating, and dressing,
as well as Instrumental Activities of Daily Living (1ADLs), which include more complex
activities necessary for independent living, such as home management, cooking, and cleaning. In
the United States alone, approximately 5 million individuals live with partial or total paralysis
arising from stroke, spinal cord injury, neurodegenerative disorders, or progressive muscular
diseases [1]. As a result, such individuals with reduced motor function must rely heavily on
caregivers for routine tasks such as scratching an itch, bringing food to the mouth, opening a door,
or moving objects across a countertop [2, 3, 4, 5]. This can significantly affect independence,
sense of agency, and overall quality of life. For these individuals, the loss of motor function
fundamentally reshapes how they navigate daily routines, underscoring the need for technologies
that can help them regain control in daily life.

Physically assistive robots are designed to help individuals perform tasks that they would
otherwise find difficult due to their motor impairments, such as feeding, grooming, dressing, or
manipulating objects around the home [6, 7, 8, 9, 10]. These robots have the potential to support
individuals in performing everyday tasks more independently and reduce caregiver burden while
improving overall quality of life. However, realizing these benefits requires robots to be controlled
in ways that respect each user’s abilities, preferences, and desired degree of involvement.

A key challenge is that the prevailing definitions of control in robotics are rooted in
autonomous manipulation and teleoperation frameworks developed for industrial, surgical, and
mobile robots. These models typically optimize for efficiency, precision, or autonomy that do not



map cleanly onto assistive contexts where user comfort, agency, and long-term use matter much
more. As a result, many existing control paradigms implicitly assume that the robot should either
execute tasks independently or respond only to direct, unambiguous commands. Such
assumptions break down in caregiving scenarios. Assistive tasks are deeply personal, often
preference-laden, and embedded in social and contextual cues. They require an interface
perspective that is grounded in the user’s experience of control. This motivates the need for a
user-centric framework that articulates how different forms of control- direct, blended, or
implicit- shape the interaction between users and assistive robots.

Within this landscape, wearable devices have emerged as a promising way to bridge user intent
and robot behavior. They embed sensors, most commonly inertial measurement units (IMUs) and
electromyography (EMG), into wearable devices and can be used to control assistive robots.
Because these devices capture on-body signals directly from the user, they can sense small,
residual movements that may be too subtle for camera-based interfaces or impossible to express
through handheld devices. They also avoid many of the limitations of environmental sensing:
unlike vision-based systems, they are robust to occlusion, lighting changes, and cluttered home
environments [11, 12, 13], and unlike stationary interfaces such as joysticks or sip-and-puff
devices, they do not restrict the user’s posture or require access to a fixed surface. These
characteristics make wearable interfaces a promising and increasingly practical way for enabling
users to interact with assistive robots.

At the same time, passive control with wearable devices has emerged as a particularly
underexplored mode of interaction for assistive robotics. In our framework, passive control refers
to scenarios where wearable devices detect naturally occurring human cues and use these signals
to modulate robot behavior without requiring explicit commands. Crucially, passive control is not
the same as full autonomy: in fully autonomous systems, the robot initiates and sequences actions
based on its own pre-determined timing and sequencing, independently of the user’s behavior or
readiness, whereas in passive control, the robot still responds directly to the user, just through
implicit rather than deliberate input.

In this paper, we consider how levels of robot autonomy can be reframed from a user-centered
perspective in assistive contexts, and we examine how wearable sensing modalities intersect with
these levels of control. In particular, we focus on the potential of wearables to serve as passive
control interfaces. By performing a thematic analysis on a case study of a wearable-based
bite-timing system for robot-assisted feeding, we examine how users experience passive control,
what cues feel natural or reliable, and how wearable systems can protect users’ sense of agency
even in the absence of explicit commands. Our findings reveal 4 common patterns across
participants, namely feelings of control, natural cues, low workload, and social compatibility.
These suggest that passive wearable sensing can meaningfully shift how assistive robots integrate
into users’ daily lives.

The contributions of this work are as follows:

* We review prior work that uses wearable devices in caregiving and assistive-robotics
settings, examining how on-body sensing has been applied across tasks and user abilities.

¢ We introduce a user-centric framework that defines three levels of control in assistive
robotics: active, shared, and passive, and show how different wearable sensing modalities
can be used as interfaces for each control level.



* We examine passive control using wearable sensing through a thematic analysis of user
feedback from a wearable-based bite-timing system for robot-assisted feeding, including 15
able-bodied participants and 2 participants with motor impairments, identifying themes of
control, natural cues, low workload, and social compatibility.

2 Wearable Devices

Wearable devices have shown a lot of promise at capturing physiological and behavioral signals
in daily life. They can monitor motion, muscle activation, posture, speech-related vibrations,
heart rhythms, and a range of other bodily signals continuously and unobtrusively. This has
driven their widespread adoption in clinical, research, and consumer contexts for gait analysis,
fall detection, neuromuscular and activity tracking, etc. [14, 15, 16, 17, 18, 19, 20]. These same
sensing capabilities make wearable devices uniquely promising as control interfaces for assistive
robotics, where understanding a user’s intent, comfort, and current state is essential for safe and
personalized interaction. Figure 1 provides an overview of how diverse sensors are embedded into
everyday wearable form factors and transformed into robot control inputs.

In the context of robot control, wearable devices offer several advantages over traditional
interfaces such as joysticks, sip-and-puff devices, web interfaces, or camera-based tracking. First,
because they are mounted directly on the body, wearable devices can pick up residual movements
that are too subtle for vision systems and too limited for handheld or desktop devices, which is an
important consideration for individuals with motor impairments. Second, on-body sensing is
unaffected by occlusion, poor lighting, cluttered environments, and changes in seating position, all
of which commonly occur in homes. Third, wearable devices support continuous measurement of
movement or muscle activity, enabling both fine-grained active control and more advanced shared
or passive control strategies. Finally, they can be used without constraining the user’s posture or
requiring them to face a particular direction, providing flexibility during everyday tasks.

Although wearable technology encompasses a wide range of devices, such as smartglasses,
body-mounted cameras, smart textiles, physiological patches, etc, we focus on wearable devices
with sensors whose primary function is to capture on-body physiological signals, rather than
environmental signals. This distinction is important since many body-mounted devices record the
world around the user (e.g., egocentric videos), but for assistive robot control, the most useful
wearable devices are those that directly sense the user’s intent through subtle behavioral cues.

Because of this, we narrow our attention to two types of sensors that have seen the most
sustained use in assistive robotics: electromyography (EMG/HDEMG) and inertial measurement
units (IMUs). We also explore how commercially available wearable devices provide different
form factors that integrate these sensor types. While these examples anchor the discussion, the
broader control framework we develop in later sections can support a wider range of sensing
modalities.

2.1 Myoelectric Interfaces (EMG/HDEMG)

EMBG interfaces capture the electrical activity produced by skeletal muscle activity. Surface EMG
(sEMG) sensors detect these signals non-invasively from electrodes placed on the skin, while
high-density EMG (HDEMG) arrays capture more detailed spatiotemporal patterns across



multiple muscle fibers. The amplitude and frequency of EMG signals correlate with muscle
activation strength, enabling continuous decoding of user intent. These signals can be translated
into discrete gestures, proportional velocity control, or context-aware triggers based on the task.

EMG sensing has long been used in clinical and rehabilitative contexts to monitor
neuromuscular health and motor recovery. For example, EMG biofeedback therapy is a common
rehabilitation method for post-stroke patients and individuals with motor impairments, helping
them relearn muscle coordination [21, 22]. Wearable EMG systems have been developed for
monitoring muscle fatigue [15, 23, 24], prosthetic limb training [25, 26], and early detection of
neuromuscular disorders [16, 18]. These applications demonstrate EMG’s ability to capture
intention-driven signals directly from the body. Given these properties, EMG naturally extends to
the control of assistive robots. They have been used to control robotic
manipulators [27, 28, 29, 30, 31] and mobile platforms [32, 33], allowing individuals with motor
impairments to easily perform tasks with intuitive robot mappings.

EMG-based interfaces are particularly powerful for individuals who retain some voluntary
muscle movement but have limited gross motor function: they provide a direct, body-based
channel for expressing intent when movements are too small or inconsistent for vision-based or
inertial sensing systems to detect. However, the same reliance on muscle activity presents
challenges. For users with minimal or highly variable activation, EMG can become noisy or
unreliable, leading to missed detections or false triggers. In these cases, alternative sensing
modalities, such as IMUs, eye-tracking, or physiological sensors, may offer more consistent
performance. Understanding where EMG excels and where it struggles is, therefore, important
when selecting wearable inputs for assistive robot control.

2.2 Inertial Measurement Units (IMUs)

IMUs are sensors that measure acceleration, velocity, and magnetic orientation by fusing a
gyroscope, accelerometer, and magnetometer together. By integrating these signals, IMUs
estimate motion, orientation, and posture without requiring external cameras or tracking systems.
When embedded in wearable form factors such as headsets or garments, IMUs provide
continuous, high-frequency information about the movement of the user. Their robustness to
lighting, occlusion, and environmental clutter has made them a widely adopted tool for capturing
human motion unobtrusively.

IMU wearables have been extensively used in healthcare and rehabilitation by clinicians to
capture quantitative measures of gait [14, 34, 19], posture [35, 36, 37], and limb activity [38, 39].
They have also shown their effectiveness in tracking joint kinematics for stroke
patients. [17, 40, 41] IMUs have also been used to monitor and quantify everyday motor activities
in people with impairments and older adults [42, 43, 20]. These applications highlight IMUs’
ability to capture fine-grained, continuous behavioral data in both clinical and real-world
environments. Given these sensing capabilities, IMUs have become a natural choice for wearable
robot-control interfaces. They have been used to teleoperate mobile manipulators and robotic
arms by mapping head-, hand-, or whole-body motion to robot base or end-effector
movement [44, 45, 46, 47, 48, 49, 50, 51, 52, 53]. These interfaces support proportional, real-time
input and can operate reliably even when vision-based tracking is infeasible.

IMU-based interfaces are most appropriate for users with reliable, repeatable motion in the
head, torso, or upper body. They are especially advantageous when vision-based systems are
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impractical due to lighting conditions. IMUs offer continuous, proportional control that mirrors
natural body motion, supporting both active and shared autonomy paradigms. However, IMUs
require stable mounting, occasional recalibration to mitigate drift, and careful mapping to avoid
fatigue during long-term use. For users with inconsistent movement or minimal motor ability,
other modalities, such as EMG, eye-tracking, or physiological sensing, may provide greater
reliability.

2.3 Commercially Available Wearables

Commercial wearables, such as smartwatches, smartglasses, and sensor-enabled rings, have made
these sensing capabilities mainstream. These devices typically integrate IMUs, heart-rate sensors,
PPG, ECG, microphones, etc., enabling continuous monitoring of motion, cardiovascular activity,
sleep, and safety-related events. Because these sensing modalities mirror many of the signals used
in assistive-robotics research, commercially available wearables provide a practical, widely
distributed foundation for future robot interfaces.

Commercial smartwatches have been used to detect atrial fibrillation and irregular heart
rhythms [54, 55, 56], for reliable fall detection in older adults [57, 58, 59], and have been used to
monitor post-cardiac event recovery [60]. They have also been widely used for physical activity
and sleep monitoring [61, 62, 63], and large-scale deployments show their potential to provide
population-level insights into health [64, 65, 66]. Smartglasses represent another commercially
available platform for on-body sensing. Prior work has shown that the IMUs embedded in
smartglasses can reliably track human motion and activity [67, 68, 69, 70].

The growing diversity of commercially available wearable devices highlights an important
design principle: the form factor determines which bodily signals can be captured. Wrist-worn
devices are well-suited for gross arm movement, heart rhythms, and activity patterns; head-worn
devices capture gaze-related head motion and speech vibrations, and ring-based wearables detect
subtle finger motion. These categories align naturally with the control framework described
earlier: although EMG and IMU sensors dominate current assistive-robotics research, the form
factors determine the type of signal that we are able to obtain from the body, which in turn
determines its use as a control interface.

3 User-Centric Levels of Control

Recent advances in wearable sensing provide powerful ways to capture users’ residual movement
and behavior, but sensing alone does not determine how these signals are translated into robot
behavior. In assistive robotics, the relationship between user signals and robot action
fundamentally shapes what the interaction feels like, how much effort the user expends, and what
roles robot and human autonomy play. To situate wearable interfaces within this broader
landscape, we organize assisted-robot interaction into three user-centric levels of control: active,
shared, and passive. These levels reflect how directly the user drives the robot, how much robot
autonomy contributes to execution, and how robot behavior aligns with naturally occurring
human cues. Figure 2 visualizes these levels of control along interacting dimensions of direct user
actuation, intent inference, and robot autonomy. In the following subsections, we examine each



level, describing how it works, why it matters, and how wearable sensors uniquely support that
mode of interaction.

e ™ e ™ e ™
ACTIVE CONTROL SHARED CONTROL PASSIVE CONTROL
Low Intent Sensing Moderate Intent Sensing High Intent Sensing
Low Robot Autonomy Moderate Robot Autonomy High Robot Autonomy
High Direct Actuation Moderate Direct Actuation Low Direct Actuation
\ J & J . y,

Figure 2: User-centric control levels positioned along three dimensions: intent sensing,
robot autonomy, and direct actuation from the user. Active control requires little to no
intent sensing and robot autonomy, with the user performing all of the direct actuation.
Shared control blends moderate intent sensing with mid-level robot autonomy, based on the
intent sensing, with the user still providing some direct actuation. Passive control relies on
high-level intent inference and high robot autonomy, with minimal to no direct actuation
from the user.

3.1 Active Control

Active control refers to where the user’s intentional actions or movements directly trigger
robotic movements.

In assistive robotics, active control has traditionally relied on web-based
interfaces [71, 72, 73, 74], hand- or mouth-operated joysticks [75, 76], speech
interfaces [77, 78, 79, 80, 81, 82] etc. Although web-based interfaces can be accessed with a
standard mouse, many users rely on alternative tools, including head- and
eye-tracking [83, 84, 85, 86, 87]. Active control keeps the human unambiguously in the loop for
initiation, timing, and direction, properties that are especially important for preference-laden
ADLs such as feeding and dressing.

Recent work has increasingly explored wearable interfaces as an alternative interface for active
control in assistive tasks. These systems leverage body-worn sensors, most commonly IMUs,
EMG armbands, or head-mounted devices, to provide continuous, user-driven control signals for
tasks such as feeding, dressing, reaching, and object manipulation. In practice, active control
using wearable devices follows a common pipeline. On-body sensors (head IMU, multi-IMU
shirt, EMG/HDEMG sleeve) stream continuous signals at tens to hundreds of hertz. These signals
are mapped to robot commands either proportionally (e.g., head orientation angles to end-effector
velocity) or via classification that triggers the end-effector (e.g., EMG gestures for “drive,”
“wrist,” or “grasp”). Finally, a single, reliable input (eg,. clicker or switch) handles mode
selection. IMU-based interfaces have been used to map head, wrist, or torso motion to robot
end-effector movement, enabling users with limited mobility to teleoperate manipulators with
high precision and reduced workspace constraints [50, 51, 52, 53, 46]. EMG-based methods
likewise translate muscle activation patterns into control commands, offering hands-free ways for
initiating robot motion, selecting modes, or executing multi-DOF trajectories [88, 29]. Across



these systems, wearable active control provides users a direct, personalized means of
commanding assistive robots.

Active control offers several advantages to a user. First, it preserves their sense of agency: the
user sets the pace, approach, and timing, and can abort instantly, which is critical for tasks that
require the robot to operate near the face or body. Second, it supports natural preferences. For
example, when feeding, bite size and utensil angle differ from person to person, and sometimes
even within individual sessions: active control allows users to make these choices without
requiring the system to infer them. However, this level of control comes with costs. Directly
operating the robot can place substantial cognitive demands on users, especially when tasks are
repetitive, require precise positioning, or involve frequent mode-switching across joints. In these
situations, the interaction can become mentally and physically tiring. Many of the sub-steps that
users must explicitly manage in active control could be safely abstracted away while still allowing
them to guide the essential parts of the task, preserving a sense of control without the full
operational burden. These limitations motivate the need for alternatives, such as shared control,
that can offload certain demands while still keeping the user directly involved.

3.2 Shared Control

Shared control combines direct user input from direct teleoperation interfaces with the
robot’s autonomy, leveraging the robot’s understanding of human intentions and the
surrounding environment

Shared control occupies the middle ground between active and passive control: the user
remains intentionally engaged, but the robot contributes autonomous assistance, such as
stabilizing motion, enforcing safety, or refining trajectories. In practice, the robot’s autonomy
consists of capabilities such as estimating object and human pose, filtering tremor or noise,
shaping motion primitives, avoiding collisions, and inferring likely goals. Arbitration, deciding
how strongly to weight user inputs versus autonomous proposals, is central to shared control.
High arbitration weight on the user gives them more direct influence; higher autonomy weight
lets the robot handle low-level execution. Effective systems adjust this balance so that the robot
helps without overriding or confusing the user.

In practice, shared control for assistive robotics has been explored across a wide range of tasks
and input modalities [44, 89, 90, 91, 92, 93, 94, 95, 96]. Across these systems, the physical form
of the input varies, but the high-level pattern is similar: the user guides overall direction, while the
shared-control policy autonomously handles the fine-grained decisions that would otherwise be
difficult or tedious to perform. Methodologically, much of the shared-control literature focuses on
how to implement assistance and arbitration, rather than on the qualitative differences between
input modalities. Some of the core questions include how to blend user and robot policies, how to
infer the user’s goal, and how to adapt the level of assistance over time [97, 98, 99]. There are a
few exceptions that begin to look at interface modality more directly to examine how different
input devices might inform assistive autonomy design [100, 101, 102, 103]. However, compared
to the substantial body of work on arbitration rules, goal-prediction algorithms, and
policy-blending schemes, the form of input is often treated as interchangeable. This gap motivates
our focus on wearable interfaces: rather than viewing them as just another input method to plug
into an existing shared-control framework, we argue that their specific properties, such as being
body-worn and being able to continuously monitor any residual movement, shape how people
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experience shared control.

Shared control using wearables would follow a pipeline analogous to that of active-control and
wearables but with an autonomy layer inserted between sensing and actuation. Continuous
wearable signals are decoded into intent cues such as movement direction, goal likelihood, while
perception modules estimate object location, human pose, and environmental constraints. The
shared-control system then combines these sources through an arbitration policy, which may
blend velocity commands or adjust robot behavior based on confidence. A simple discrete input
(e.g., switch, button, vocal cue) can provide confirmation or override, ensuring that autonomy
supports the user’s intent rather than replacing it.

Shared control offers several advantages to a user. First, it reduces cognitive workload by
allowing the robot to handle stabilization, fine alignment, and repetitive sub-steps while the user
specifies goals or general motion trends. Second, it improves precision: during tasks such as
feeding or dressing, users can issue coarse movements while the robot autonomously filters
tremor, shapes trajectories, or adjusts approach angles to be safe and comfortable. Third, shared
control lowers the barrier to entry for users with limited motor bandwidth: even small, noisy, or
intermittent inputs can be amplified into functional, high-quality assistance. At the same time,
shared control carries trade-offs. If the robot’s autonomous behaviors are not transparent or
predictable, users may feel overridden or confused when trajectories deviate from their input.
Systems must therefore carefully balance assistance and user authority, ensuring that autonomy
supports rather than conflicts with human intent. While shared control alleviates many of the
burdens of full teleoperation, it still relies on users providing deliberate input. This makes it less
suitable for tasks where timing is subtle, continuous, or difficult to explicitly signal, motivating
the need for passive control.

3.3 Passive Control

Passive control enables robots to detect implicit signals which are small, unintentional
signals users give through everyday behavior, such as chewing pauses or shifts in posture,
and adjust their behavior accordingly.

In practice, passive control does not require a user to issue deliberate or continuous commands
to the robot; instead, the robot responds to cues that naturally arise from the user’s behavior.
Importantly, passive control is not equivalent to full autonomy: in fully autonomous systems, the
robot independently decides when and how actions should proceed, whereas in passive control,
the robot remains tightly coupled to the user’s timing. The robot advances only when the user’s
natural behavior indicates readiness or task progression, making passive control particularly
well-suited for activities that depend on subtle timing, or caregiver-like responsiveness.

Passive control offers several advantages. Because the user no longer has to provide inputs, it
can substantially reduce both cognitive and physical workload. This makes passive control
especially well-suited for long, repetitive, or timing-dependent tasks in which users may not want,
or be able, to repeatedly teleoperate. Instead of actively driving the robot, the user’s natural
behaviors, such as chewing rhythms, brief pauses, posture adjustments, or other unconscious
signals, indicate when the robot should proceed. For people with impairments, this ability to
remain engaged without supplying explicit input can dramatically improve comfort during
extended use.

However, passive control also presents significant challenges. Implicit cues are often subtle,



noisy, or context-dependent, making them harder to interpret than intentional inputs. Systems
must avoid both over-sensitivity, which can trigger premature or unwanted actions, and
under-sensitivity, which can cause delays or unresponsiveness. Effective passive control,
therefore, requires reliable sensing, robust filtering, and careful modeling of user state and task
context. These considerations highlight why passive control remains far less explored than active
or shared control, despite its strong potential for enabling seamless, caregiver-like interactions.

In assistive robotics, passive control has relied on sensing modalities that infer user intent or
user state without explicit commands. For example, gaze fixations [104, 105, 106, 107] have been
used to infer desired object targets, body pose or posture shifts [108, 109, 110, 111] can indicate
readiness for the next step in dressing, and measurements such as muscle activation trends, or
fatigue signatures can modulate robot assistance levels [112]. Traditionally, these signals have
been sensed using external perception systems, such as RGB or depth cameras, motion-capture
setups, or fixed eye-tracking hardware, that require stable viewpoints and controlled lighting.
These setups can be sensitive to occlusion, difficult to deploy in real homes, and often place
constraints on where users can be positioned relative to the robot.

This motivates a deeper examination of passive control with wearables since they offer an
alternative way to capture similar implicit cues directly from the body while remaining unaffected
by some of the problems that vision-based systems face. Most wearable-based systems in
assistive robotics have been designed for teleoperation or goal-driven shared control. As a result,
the field lacks a clear understanding of how continuous, naturally occurring signals captured
unobtrusively from the body might support tasks that users perform every day but do not want to
explicitly command. Tasks such as feeding, bathing, or dressing require subtle timing and
responsiveness to the user’s state, which are qualities that are difficult for fully autonomous
systems to infer and adapt to, and burdensome for users to continuously teleoperate.

Given the sparse amount of existing literature that uses passive control with wearables, we
examine an early advancement from our group that uses continuous signals from wearables to
infer bite timing during robot-assisted feeding. By evaluating a real wearable-based passive
control system in detail, we validate our intuition that combining wearables with implicit sensing
can open new opportunities for assistive robots, particularly in tasks that change daily or rely on
natural timing.

3.3.1 WAFFLE: A Wearable Approach to Bite Timing Estimation in Robot-Assisted
Feeding

Bite timing refers to determining the appropriate moment for an assistive feeding robot to deliver
food to the user: a decision that, in human caregiving, is based on subtle behavioral cues such as
pausing between chews, turning toward the utensil, or briefly stopping conversation.

WAFFLE [113] introduces a wearable, learning-based approach for estimating this timing by
detecting these naturally occurring signals without requiring explicit user commands.

WAFFLE uses two unobtrusive wearable sensors: a single IMU mounted on the left side of a
glasses frame and a throat contact microphone worn at the neck. The IMU captures head
movements and chewing-related vibrations, while the throat microphone detects vocal-cord
vibrations from chewing and speaking without recording ambient audio, preserving privacy.
Vision-based approaches are vulnerable to occlusions, variable robot pose, user movement, and
changes in seating or social-dining configurations, making them unreliable in real-world contexts.



These limitations motivate the use of wearables, which maintain a consistent frame of reference
and remain robust across diverse dining environments.

WAFFLE was evaluated in two main studies. In the first study, fifteen participants without
motor impairments (referred to in subsequent sections as P1-15) completed individual and social
dining sessions using three bite-timing methods: Fixed Interval, Mouth Open, and WAFFLE,
while being fed by the Obi [114] robot positioned to the side. Participants completed three
consecutive trials per method, with method order being single-blind. After each method,
participants rated timing appropriateness and responded to 7-point Likert items assessing
distraction by the robot, feeling of control, robot understanding, appropriateness of robot
movement, seamlessness, mental workload, physical workload, and natural conversation. In the
second study, two participants with motor impairments (referred to in subsequent sections as 11-2)
used WAFFLE in their homes with the FEAST robot, selecting their preferred assertiveness
threshold before completing individual and social dining sessions

Across these evaluations, WAFFLE either matched or outperformed baseline methods. In
individual dining, 100% of participants found WAFFLE’s timing appropriate, and it received the
most “Right Time” ratings. It also produced lower cognitive and physical workload and matched
ratings for robot understanding and seamlessness with non-wearable methods despite relying on
implicit cues. In social dining, WAFFLE matched or exceeded baselines, particularly on
distraction and natural conversation, where explicit triggers like mouth opening were disruptive.
In the study with individuals with motor impairments, both participants rated WAFFLE’s timing
as appropriate and described the interaction as natural, intuitive, and comparable to, or even better
than, their human caregivers. Collectively, the results show that WAFFLE generalizes across
robots, participants, foods, and dining contexts, providing robust bite-timing.

(%) FEELING OF CONTROL NATURAL CUES
[P2] “I felt in control using the mouth open and the wearables. In [P6] “The wearables made
those, either it waited for me to clearly be done with my bite [12] “Yes, | like it, um... | me feel in controlin the
including chewing or it would wait for me to signal that im ready didn't have to think sense that it understood my
to eat.” about it, it was...The natural body movements
timing was great, it and | did not have to exert
[11] “I do like it. Cause I'm in [P14] “| felt in control was... | loved it really.” any additional effort in
control of the when using the order for it to feed me”
meal, when | was gonna take wearables [...] because
the bite, when | wasn’t. Like it either looked or [P1] “It was the most seamless and recreated the way | usually
before, it seemed pretty ... waited for some sort of eat by waiting for me to stop chewing and moving before
to flow pretty good.” cue from me.” bringing the spoon closer to my mouth.”
0 SOCIAL COMPATIBILITY LOW WORKLOAD
[P12] “In the social setting, [P3] “I think the wearable [P15] “It required the least amount of work on my part and had
it was pretty seamless and | method was especially the best timing. | didn't have to open my mouth or wait
was pretty distracted by beneficial for the social unnecessarily long for the food to come.”
the conversation to notice setting, since the actions
the robot waiting or for pausing the feeding «
needing any direction from aligned well [with] the [P13] “The wearables method RN preifer e
me to proceed with its social cues where I'd rather had the least mental workload Weavrablej's approach
trajectory” not be disrupted”” for me, and | felt like | didn't since it did not
have to do much on my end or rsqu“'e r:e t°[ a<]3t|VEIY
« . . ; - wait significantly long for the 0 anything [...] or to
[P9] “It was particularly helpful in the social context where it did sl o el iy needlessly wait [..]”

not require me interrupting the conversation.”
Figure 3: A subset of quotes from our study involving 15 participants without motor

impairments and 2 participants with motor impairments is presented and organized
according to the categories outlined in our thematic analysis.
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3.3.2 Thematic Analysis

In addition to Likert items, we asked participants some open-ended questions during our study.
Consequently, we conducted a thematic analysis of these participant responses, focusing on the
wearable sensing method for assistive feeding. The analysis identified four core themes: namely
(1) feeling of control, (2) natural cues, (3) social compatibility, and (4) low workload that capture
how users perceived the experience of being fed through wearable-based passive sensing methods.

3.3.2.1 Feeling of Control

Across the study, 9 of 15 participants without impairments and both participants with motor
impairments described the wearable method as giving them a strong sense of control over the
feeding process. Rather than issuing explicit commands or relying on a fixed timing cycle, they
felt that the robot advanced when they were ready, framing control not as performing a deliberate
gesture, but as the robot understanding their intentions. As I1 explained, “I do like it. Cause I'm
in control of the meal, when I was gonna take the bite, when I wasn’t. Like before, it seemed
pretty - - -it seemed to flow pretty good.” The ability to pause simply by continuing to chew or by
stopping briefly made the interaction feel natural and unforced. I1 also noted that the robot
stopped reliably: “Yes. It stopped when I wanted to.” Participants without impairments expressed
similar sentiments. P2 said the wearables matched their own timing: “it waited for me to clearly
be done... so I didn’t feel rushed or frustrated with slowness”, and P14 appreciated that the robot
“waited for some sort of cue from me.” For many, the fact that the system responded to ongoing
behavior allowed them to engage in conversation or look around the room while still feeling in
control.

However, 5 participants felt more in control with the mouth-open (baseline) method because its
explicit cue provided a clear, intentional signal. As P3 described, “it relied on an explicit cue [- - -]
the wearables came second in this regard.” P5 expressed a similar concern, noting that if they
wanted to delay a bite using the wearable method, they had to improvise, saying, “I needed to
come up with something that will pause the arm from coming in like talking or chewing.” Others
mentioned technical or behavioral mismatches. P12 noted that the wearable devices did not
always detect ongoing chewing, and P11 felt constrained by needing to remain “unnaturally still.”

Overall, these responses show that wearable-based passive control can support a strong sense
of agency for many users, particularly those who value timing that adapts to their natural eating
pace. But they also highlight that some users prefer explicit, intentional cues to guarantee control.
The diversity of reactions underscores that the concept of feeling of control is shaped not just by
whether users can stop or start the robot, but by whether the signaling mechanism aligns with
their preferred way of communicating readiness.

3.3.2.2 Natural Cues

9 of the 15 participants without impairments and 1 of 2 participants with impairments
described the wearable method as the most natural way for the robot to determine bite timing.
Participants noted that the system responded to signals they were already producing, such as
chewing, pausing, or briefly stopping conversation, rather than requiring them to perform an
explicit gesture. For the participant with impairments who strongly preferred the wearable
devices, the appeal lay in not needing to interrupt their flow of activity: “I didn’t have to think
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about it - - - [ didn’t have to stop what I was doing and do a specific action.” They later added that
the timing felt effortless: “It was almost seamless - - - I loved it really.”

Several participants without impairments echoed this sentiment, highlighting that the wearable
devices aligned with how they would naturally pace their own eating. P1 described the method as
“the most seamless” because it simply waited for chewing or talking to stop before bringing in the
next bite. Others emphasized how the system adjusted: P3 noted that its awareness of chewing
created “natural brakes,” and P2 appreciated that the timing adapted when they wanted to take
longer between signals. Participants also said that the wearable devices made the robot feel more
responsive to their body rather than forcing them into a fixed pattern. P6 summarized this as the
robot understanding “my natural body movements,” and P5 remarked that the system “adjust[ed]
to the environment - - - like a person would.”

Not every participant experienced the interaction this way. Three participants preferred the
predictability or explicitness of the other methods. P8 valued the fixed schedule for planning
conversation, and P11 found the wearable devices “annoying” because staying still felt unnatural.
A few participants expressed concerns about occasional misdetections. P12 pointed out that the
system “sometimes didn’t pick up on the fact that I was still chewing.” These reactions show that
while the wearables generally supported a natural-feeling interaction, the experience depended on
how well the sensing aligned with each person’s eating style and comfort.

Overall, participants who favored the wearable approach described it not as performing a
special signal but as the robot picking up on cues they were already giving. This sense of the
robot adapting to their ordinary behavior, without demanding a separate action, was central to
why many found the method intuitive and unobtrusive.

3.3.2.3 Social Compatibility

In the social dining setting, 4 of 15 participants without impairments and 1 of 2 participants
with impairments described the wearable method as the least disruptive to conversation. Many
appreciated that the robot paused naturally when they were speaking and resumed only when their
behavior indicated readiness. The participant with impairments emphasized this directly, noting
that the wearable devices let them “have a conversation and eat at the same time.” For several
others, the appeal came from not needing to stop mid-sentence or perform a visible cue. P9
explained that the method “did not require me interrupting the conversation,” and P3 felt it
aligned with social norms, saying the wearable cues matched the moments when they “would
rather not be disrupted.”

Participants also highlighted that the system’s responses blended into the flow of interactions.
One participant noted that during social dining, the method was “pretty seamless,” adding that
they were often so absorbed in conversation they barely noticed the robot waiting in the
background. P15 described a similar experience, appreciating that the robot stayed still during
conversation and only moved forward once they stopped talking: “I could continue having a
conversation. .. it wouldn’t make the conversation awkward.” They contrasted this with
mouth-open and fixed-interval timing, both of which forced them to break conversational rhythm.
Only one participant (P7) found it “slightly distracting” during conversation, though still
preferable to the other methods.

Overall, we see that participants favored the wearable method because it respected
conversational timing rather than interrupting it, allowing users to engage socially without having
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to manage the robot’s behavior moment-to-moment.

3.3.2.4 Low Workload

6 of the 15 participants without impairments emphasized that they did not need to think about
signaling for the next bite or interrupt their eating to perform an explicit cue. As P2 explained, the
wearable devices demanded “the least amount of thinking,” both because it waited for them to
finish chewing and because they no longer had to decide when to signal. Several participants
echoed that the method reduced the small decisions present in the other interfaces. Participants
also noted that the wearable system did not introduce additional actions into the eating process.
Instead, it responded to behaviors they were already producing. P9 preferred the wearable devices
because it “did not require me to actively do anything,” distinguishing it from mouth-open cues
that required repeated, deliberate gestures. Similarly, P13 emphasized that they “didn’t have to
perform the action of opening my mouth for every bite” and described the method as having the
“least mental workload.”

Overall, participants who favored the wearable method described it as needing low workload
because it eliminated having to provide explicit actions, allowing them to focus on eating or
conversation without managing the robot’s timing.

3.3.3 Reflection

Overall, these themes offer insight into what passive control with wearable devices could
potentially afford users that are not captured by timing metrics or Likert scores alone. The
qualitative responses show that participants valued the system not simply because it succeeded at
predicting bite timing, but because it did so in a way that aligned with how they naturally
behaved. Themes of feeling of control, natural cues, low workload, and social compatibility
emerged repeatedly, suggesting that passive sensing is most successful when it fades into the
background and responds to ongoing behavior rather than demanding additional effort or
attention. These findings help articulate why wearable devices are a promising platform for
passive control: their ability to capture subtle, continuous signals from the human body allows
assistive robots to adapt to users without requiring explicit commands or constraining where they
sit, look, or move. The thematic analysis, therefore, broadens our understanding of passive
control. This user-centered perspective helps clarify where passive wearable sensing is most
likely to succeed, where it may fall short, and why it offers a distinct design space from both
explicit teleoperation and fully autonomous decision-making.

4 Future Work and Opportunities

While this thesis examined one system using wearable-based passive control in robot-assisted
feeding, the broader intersection of wearable sensing and passive control presents several
compelling avenues for future exploration. Passive control remains an emerging mode of
interaction, and many of its strengths, such as low workload, natural timing, and user-driven
responsiveness, have yet to be fully leveraged across the wide landscape of assistive tasks.

A natural next step is to extend passive wearable sensing beyond feeding to additional
Activities of Daily Living (ADLs) and Instrumental Activities of Daily Living 1ADLs). Many
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everyday tasks contain subtle behavioral cues: pauses, shifts in posture, changes in muscle
activity that could similarly serve as implicit signals of readiness or intent. Promising applications
include:

* Dressing assistance, where micro-movements of the arms, shoulders, or torso could indicate
readiness for garment transitions or the next step in the dressing sequence.

* Functional tasks around the home, where posture adjustments might indicate when users
are ready for objects to be brought closer, or repositioned.

* Grooming and hygiene, where stillness, brief pauses, or subtle head orientation changes
could signal readiness for brushing, shaving, or facial care.

Longitudinal adaptation represents another key opportunity. Wearable-based passive control
may be particularly effective when systems learn from continued daily use: adapting to changes
in motor ability, personalizing inference thresholds, or refining models of movement patterns
unique to each user. Developing passive-control systems that evolve with the user over weeks or
months could dramatically increase reliability and comfort while reducing the need for
recalibration. Additionally, real-world deployment remains a crucial challenge. Future work
should explore how passive wearable control performs in diverse home environments, social
dining settings, or public spaces where lighting, clutter, and movement vary unpredictably.
Testing systems over extended durations will also help uncover practical considerations such as
sensor drift, comfort, durability, etc., that are essential for adoption.

Future work may also explore additional wearable modalities that extend beyond IMUs and
EMG. Physiological sensors such as PPG or skin conductance may reveal stress and discomfort
bone and emerging smart textiles could capture distributed body movements that traditional
sensors miss. Combining these signals through multimodal sensor fusion could increase
robustness, especially in unpredictable home environments.

Another promising direction involves expanding the proposed framework itself. Although this
thesis characterizes control along three levels from the perspective of the user, future research
could position these levels within a richer multidimensional design space. Axes such as robot
autonomy versus user actuation may allow researchers to reason more precisely about when
certain wearable modalities are appropriate or how systems should adjust autonomy over time.
Extending the framework in this manner could help researchers tailor interactions to individual
users, specific tasks, or different abilities.

5 Conclusion

This thesis presents a user-centric framework for understanding control in assistive robotics from
the user’s perspective and examines how wearable sensing can support three distinct levels of
control: active, shared, and passive. Through a review of prior work, we show that wearable
devices, particularly EMG and IMU sensors, are uniquely positioned to provide reliable,
personalized input in contexts where traditional interfaces may fall short. While active and shared
wearable-based control have been explored extensively, passive control remains comparatively
underutilized.
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Our thematic analysis of a wearable-based bite-timing system illustrates that passive control
using wearable sensing can provide meaningful benefits, including strong feelings of control,
natural pacing, reduced cognitive effort, and improved social interaction. These findings highlight
passive wearable sensing as a promising direction for enabling assistive robots to behave in ways
that feel intuitive, non-disruptive, and aligned with users’ everyday behavior.

Ultimately, this work suggests that wearable devices will likely play an important role in the
future of user-centered assistive robotics. By coupling on-body sensing with models of human
behavior, assistive robots can become more adaptive, responsive, and seamlessly integrated into
the daily lives of people with motor impairments. Continued exploration of passive sensing
modalities, richer autonomy frameworks, and long-term personalization will help unlock the full
potential of wearables as interfaces for supporting independence and quality of life.
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